3,273 zoekresultaten voor “vision on teaching and learning” in de Publieke website
-
Machine learning and computer vision for urban drainage inspections
Sewer pipes are an essential infrastructure in modern society and their proper operation is important for public health. To keep sewer pipes operational as much as possible, periodical inspections for defects are performed.
-
Computer vision en beeldverwerking
Aan de hand van de karakteristieke aspecten van een beeld kunnen bepaalde computers ons vertellen wat het beeld laat zien. Ze kunnen dit leren op dezelfde manier als jonge kinderen beelden kunnen leren herkennen. Het verder verbeteren van deze technieken opent de weg naar een hele reeks nieuwe toepassingen.…
-
Deep learning for visual understanding
With the dramatic growth of the image data on the web, there is an increasing demand of the algorithms capable of understanding the visual information automatically.
-
Nonparametric Bayesian Methods in Robotic Vision
In this dissertation non-parametric Bayesian methods are used in the application of robotic vision.
-
Exploring Open-World Visual Understanding with Deep Learning
We are living in an information era where the amount of image and video data increases exponentially.
-
Exploring Images With Deep Learning for Classification, Retrieval and Synthesis
In 2018, the number of mobile phone users will reach about 4.9 billion. Assuming an average of 5 photos taken per day using the built-in cameras would result in about 9 trillion photos annually.
-
Teach The Teachers -Basis
Ontdek de ‘Teach the Teachers- Basis’ cursus van Boerhaave Nascholing over competentiegericht opleiden en het opleiden van AIOS. Lees hier meer!
-
Teachers' teaching and learning motivation in China
In de context van het Chinese onderwijs onderzocht Zhang welke invloed de leermotivatie van docenten heeft op de kwaliteit van hun onderwijs.
-
Searching by Learning: Exploring Artificial General Intelligence on Small Board Games by Deep Reinforcement Learning
In deep reinforcement learning, searching and learning techniques are two important components. They can be used independently and in combination to deal with different problems in AI, and have achieved impressive results in game playing and robotics. These results have inspired research into artificial…
-
Reflections on comparative teaching in public administration
Kohei Suzuki and his co-authors reflect on their extensive scholarly experience teaching comparative public administration across diverse countries including Canada, the Netherlands, Qatar, and the United States.
-
Effects of the early social environment on song and preference learning in zebra finches
Songbirds as vocal learners learn their songs and song preference from social tutors. Tutor choice for both song and preference learning are important to characterize for understanding individual learning performance and cultural transmission of song.
-
Voormalige Teaching Fellows
De Teaching Fellows zijn inmiddels afgezwaaid aan de Leiden Teachers' Academy.
-
Erasmus+ for Teaching Assignments
PhD, Medewerker
-
Machine Learning
Computers zijn in staat om ongelooflijk nauwkeurige voorspellingen te doen op basis van machine learning. Met andere woorden, deze computers kunnen zonder tussenkomst leren als ze eenmaal door mensen zijn voorgeprogrammeerd. Bij LIACS verkennen en verleggen we de grenzen van wat een revolutionaire nieuwe…
-
What’s CLIL about bilingual education? A window on Content and Language Integrated Learning pedagogies
In Nederland bieden ongeveer 130 van de 700 middelbare scholen een tweetalige stroom aan. Toch is er nog maar weinig wetenschappelijk onderzoek naar CLIL (content and language integrated learning). Met haar proefschrift wil Evelyn van Kampen (promovendus bij het ICLON) bijdragen aan een beter begrip…
-
Voormalige Teaching Fellows
De volgende docenten zijn inmiddels afgezwaaid aan de Leiden Teachers' Academy.
-
Voormalige Teaching Fellows
De volgende docenten zijn inmiddels afgezwaaid aan de Leiden Teachers' Academy.
-
Voormalige Teaching Fellows
De volgende Fellows zijn inmiddels afgezwaaid aan de Leiden Teachers' Academy.
-
Voormalige Teaching Fellows
De volgende docenten zijn inmiddels afgezwaaid aan de Leiden Teachers' Academy.
-
Transdisciplinary Perspectives on Validity: Bridging the Gap Between Design and Implementation for Technology-Enhanced Learning Systems
Technologies that help to enhance our educational environments can be found everywhere.
-
Computational speedups and learning separations in quantum machine learning
This thesis investigates the contribution of quantum computers to machine learning, a field called Quantum Machine Learning. Quantum Machine Learning promises innovative perspectives and methods for solving complex problems in machine learning, leveraging the unique capabilities of quantum computers…
-
Machine learning for radio galaxy morphology analysis
We explored how to morphologically classify well-resolved jetted radio-loud active galactic nuclei (RLAGN) in the LOw Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) using machine learning.
-
Massively collaborative machine learning
Promotor: J. N. Kok, Co-promotor: A. J. Knobbe
-
Transfer Learning in Deep Reinforcement Learning and Procedural Content Generation
In this dissertation (titled: Exploring the Synergies between Transfer in Reinforcement Learning and Procedural Content Generation) we explore how the two research fields named in the title, namely Transfer in Reinforcement Learning (TRL) and Procedural Content Generation (PCG) can synergize togethe…
-
Deep Learning Solutions for Domain-Specific Image Segmentation
Image segmentation is a fundamental task in computer vision, with applications ranging from medical diagnostics to archaeological research.
-
Understanding deep meta-learning
The invention of neural networks marks a critical milestone in the pursuit of true artificial intelligence. Despite their impressive performance on various tasks, these networks face limitations in learning efficiently as they are often trained from scratch.
-
Multi Modal Representation Learning and Cross-Modal Semantic Matching
Humans perceive the real world through their sensory organs: vision, taste, hearing, smell, and touch. In terms of information, we consider these different modesalso referred to as different channels of information or modals.
-
Multi-dimensional feature and data mining
In this thesis we explore machine and deep learning approaches that address keychallenges in high dimensional problem areas and also in improving accuracy in wellknown problems. In high dimensional contexts, we have focused on computational fluid dynamics (CFD) simulations.
-
Exploring deep learning for multimodal understanding
This thesis mainly focuses on multimodal understanding and Visual Question Answering (VQA) via deep learning methods. For technical contributions, this thesis first focuses on improving multimodal fusion schemes via multi-stage vision-language interactions.
-
Exploring Deep Learning for Intelligent Image Retrieval
This thesis mainly focuses on cross-modal retrieval and single-modal image retrieval via deep learning methods, i.e. by using deep convolutional neural networks.
-
Burden Sharing for What? NATO Implications of Three US Visions
Linde Desmaele onderzoekt de dilemma's die voortvloeien uit het Amerikaanse beleid rond lastenverdeling, met focus op de Europese bondgenoten.
-
Reden Valencia Libo-onFaculteit der Geesteswetenschappen
r.libo-on@hum.leidenuniv.nl | 071 5272201
-
Efficient tuning of automated machine learning pipelines
Automated Machine Learning (AutoML) is widely used to automatically build a suitable practical Machine Learning (ML) model for an arbitrary real-world problem, reducing the effort of practitioners in the ML development cycle for real-world applications. Optimization is a key part of a typical AutoML…
-
Betrokkenheid van studenten bij blended learning in het hoger onderwijs
Op welke manier kunnen docenten de betrokkenheid van studenten ondersteunen en vergroten in de context van blended learning?
-
Secure Distributed Machine Learning in Healthcare: A Study on FAIR, Compliance and Cybersecurity for Federated Learning
Promotie
-
Learning from small samples
Learning from small data sets in machine learning is a crucial challenge, especially when dealing with data imbalances and anomaly detection. This thesis delves into the challenges and methodologies of learning from small datasets in machine learning, with a particular focus on addressing data imbalances…
-
Information Diffusion Analysis in Online Social Networks based on Deep Representation Learning
With the emergence of online social networks (OSNs), the way people create and share information has changed, which becomes faster and broader than traditional social media.
-
Learning My Way
Learning about My meaningful Way through life and profession.
-
Towards better L-1oral language education: perspectives on good quality oral language teaching and the role of feedback
Hoewel spreekvaardigheidonderwijs internationaal wordt beschouwd als essentieel voor het bevorderen van communicatieve vaardigheden en kritisch denken, is dit domein aanzienlijk minder onderzocht dan lees- en schrijfvaardigheid. Dit onderzoeksproject had als overkoepelend doel zicht te krijgen op werkende…
-
Centre for Professional Learning
Opleidingen voor professionals op academisch niveau om vraagstukken van vandaag en morgen rondom beleid en bestuur op te lossen. Het team van CPL bestaat uit academische professionals in public affairs, veiligheid, diversiteit en inclusie, publiek leiderschap, legal technology en communicatie.
-
Enhancing Autonomy and Efficiency in Goal-Conditioned Reinforcement Learning
Reinforcement learning is a framework that enables agents to learn in a manner similar to humans, i.e. through trial and error. Ideally, we would like to train a generalist agent capable of performing multiple tasks and achieving various goals.
-
Bayesian learning: challenges, limitations and pragmatics
This dissertation is about Bayesian learning from data. How can humans and computers learn from data?
-
E-learning Antibiotica allergie
Als zorgverlener komt u regelmatig in aanraking met patiënten die aangeven allergisch te zijn voor antibiotica. In deze online module leert u verschillende typen allergieën onderscheiden en dilemma’s uit de dagelijkse praktijk op te lossen.
-
Leiden Learning & Innovation Centre
LLInC ondersteunt innovatief en hoogwaardig onderwijs, binnen de Universiteit Leiden en in samenwerking met onderwijs- en maatschappelijke organisaties.
-
Hybrid Quantum-Classical Metaheuristics for Automated Machine Learning Applications
This thesis investigates how quantum, quantum-inspired, and hybrid quantum-classical computation can enhance key points of the automated machine learning (AutoML) pipeline under the constraints of noisy intermediate-scale quantum (NISQ) devices.
-
The research-teaching nexus in the sciences: Scientific research dispositions and teaching practice
Dit proefschrift handelt over de verwevenheid van onderzoek en onderwijs in de natuurwetenschappen. Algemeen wordt erkend dat een sterke verwevenheid van onderwijs en onderzoek belangrijk is, maar het was niet altijd duidelijk op welke manieren deze relatie vorm kan krijgen in het universitaire onde…
-
Reliable and Fair Machine Learning for Risk Assessment
The focus of this thesis is on the technical methods which help promote the movement towards Trustworthy AI, specifically within the Inspectorate of the Netherlands.
-
Workshop "Teaching and Learning Greek in Byzantium" (October 4)
Andrea Cuomo (Ghent University), Baukje van den Berg (Central European University), and Katharina Preindl (Ghent University) are pleased to invite you to the workshop "Teaching and Learning Greek in Byzantium 2: Learning and Using Vocabulary in Byzantium and Beyond" on Friday October 4 at Ghent University…
-
Learning Analytics and Data Science
Datagedreven werken in het onderwijs: het verzamelen, analyseren en interpreteren van gegevens uit onderwijsomgevingen voor verbetering van onderwijs- en leerresultaten.
-
Deep learning for tomographic reconstruction with limited data
Tomography is a powerful technique to non-destructively determine the interior structure of an object.Usually, a series of projection images (e.g.\ X-ray images) is acquired from a range of different positions.